The standard deviations of Cremer-Pople ring-puckering coordinates. By Robin Taylor, Department of Crystallography, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
(Received 9 October 1979; accepted 25 February 1980)

Abstract

A method is presented for calculating standard deviations of Cremer-Pople ring-puckering coordinates.

The puckering of an N-membered ring ($N>3$) may be described mathematically by the coordinates devised by Cremer \& Pople (1975). A method is presented here for calculating the standard deviations of these quantities. For convenience, it is assumed that the atomic coordinates are expressed relative to an arbitrary set of Cartesian axes with the origin at the geometrical center of the ring. Thus, if the position vector of the j th atom is \mathbf{R}_{j}, then

$$
\begin{equation*}
\sum_{j=1}^{N} \mathbf{R}_{j}=0 \tag{1}
\end{equation*}
$$

Cremer \& Pople define a mean plane containing vectors \mathbf{R}^{\prime} and $\mathbf{R}^{\prime \prime}$ given by

$$
\begin{align*}
\mathbf{R}^{\prime} & =\sum_{j=1}^{N} \mathbf{R}_{j} \sin [2 \pi(j-1) / N] \tag{2}\\
\mathbf{R}^{\prime \prime} & =\sum_{j=1}^{N} \mathbf{R}_{j} \cos [2 \pi(j-1) / N] \tag{3}
\end{align*}
$$

The perpendicular displacement of the j th atom from this plane, ζ_{j}, is

$$
\begin{equation*}
\zeta_{j}=\mathbf{R}_{j} . \mathbf{T} /|\mathbf{T}|, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{T}=\mathbf{R}^{\prime} \times \mathbf{R}^{\prime \prime} \tag{5}
\end{equation*}
$$

When N is odd, the Cremer-Pople puckering coordinates are then q_{m} and $\varphi_{m}[m=2,3, \ldots,(N-1) / 2]$ in the formulae

$$
\begin{equation*}
q_{m} \cos \varphi_{m}=(2 / N)^{1 / 2} \sum_{j=1}^{N} \zeta_{j} \cos [2 \pi m(j-1) / N] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{m} \sin \varphi_{m}=-(2 / N)^{1 / 2} \sum_{j=1}^{N} \zeta_{j} \sin [2 \pi m(j-1) / N] \tag{7}
\end{equation*}
$$

When N is even, there is an additional puckering coordinate:

$$
\begin{equation*}
q_{N / 2}=N^{-1 / 2} \sum_{j=1}^{N}(-1)^{j-1} \zeta_{j} \tag{8}
\end{equation*}
$$

0567-7394/80/050828-02\$01.00

The variances of $q_{m}\left[=\sigma^{2}\left(q_{m}\right)\right]$ and $\varphi_{m}\left[=\sigma^{2}\left(\varphi_{m}\right)\right]$ are given by

$$
\begin{align*}
& \sigma^{2}\left(q_{m}\right)=\sum_{j} \sum_{k}\left(\partial q_{m} / \partial p_{j}\right)\left(\partial q_{m} / \partial p_{k}\right) \operatorname{cov}\left(p_{j}, p_{k}\right) \\
& \sigma^{2}\left(\varphi_{m}\right)=\sum_{j} \sum_{k}\left(\partial \varphi_{m} / \partial p_{j}\right)\left(\partial \varphi_{m} / \partial p_{k}\right) \operatorname{cov}\left(p_{j}, p_{k}\right) \tag{9}
\end{align*}
$$

where the p_{j}, p_{k} are the ring-atom coordinates, and $\operatorname{cov}\left(p_{j}, p_{k}\right)$ is the covariance of p_{j} and p_{k}. If the covariances are not available from the least-squares correlation matrix, it is necessary to assume that the atomic coordinates are independent, i.e.

$$
\begin{array}{ll}
\operatorname{cov}\left(p_{j}, p_{k}\right)=0 & \left(p_{j} \neq p_{k}\right), \\
\operatorname{cov}\left(p_{j}, p_{k}\right)=\sigma^{2}\left(p_{k}\right) & \left(p_{j}=p_{k}\right) \tag{11}
\end{array}
$$

$\left[\sigma^{2}\left(p_{k}\right)=\right.$ variance of $\left.p_{k}\right]$. Consequently, (9) may be written

$$
\begin{align*}
& \sigma^{2}\left(q_{m}\right)=\sum_{k}\left(\partial q_{m} / \partial p_{k}\right)^{2} \sigma^{2}\left(p_{k}\right), \tag{12}\\
& \sigma^{2}\left(\varphi_{m}\right)=\sum_{k}\left(\partial \varphi_{m} / \partial p_{k}\right)^{2} \sigma^{2}\left(p_{k}\right) .
\end{align*}
$$

In order to calculate the required standard deviations, it is therefore necessary to evaluate the partial derivatives of q_{m} and φ_{m} with respect to the ring-atom coordinates. If the atomic coordinates of the j th atom relative to the arbitrary set of Cartesian axes are $\left(x_{j}, y_{j}, z_{j}\right)$, and the components of \mathbf{T} are X, Y and Z, i.e.

$$
\begin{align*}
\mathbf{R}_{i} & =x_{j} \mathbf{i}+y_{j} \mathbf{j}+z_{j} \mathbf{k} \tag{13}\\
\mathbf{T} & =X \mathbf{i}+Y \mathbf{j}+Z \mathbf{k} \tag{14}
\end{align*}
$$

then (4) may be rewritten as

$$
\begin{equation*}
\zeta_{j}=\left(x_{j} X+y_{j} Y+z_{j} Z\right) /|\mathbf{T}| \tag{15}
\end{equation*}
$$

From (14),

$$
\begin{equation*}
|\mathbf{T}|=\left(X^{2}+Y^{2}+Z^{2}\right)^{1 / 2} \tag{16}
\end{equation*}
$$

and from (2), (3), (13) and (14),

$$
\begin{align*}
X & =\sum_{i=1}^{N} \sum_{j=1}^{N} S_{i j} y_{i} z_{j}, \tag{17}\\
Y & =\sum_{i=1}^{N} \sum_{j=1}^{N} S_{i j} z_{i} x_{j}, \tag{18}\\
Z & =\sum_{i=1}^{N} \sum_{j=1}^{N} S_{i j} x_{i} y_{j}, \tag{19}
\end{align*}
$$

(C) 1980 International Union of Crystallography
where

$$
\begin{align*}
S_{i j}= & \sin [2 \pi(i-1) / N] \cos [2 \pi(j-1) / N] \\
& -\cos [2 \pi(i-1) / N] \sin [2 \pi(j-1) / N] \tag{20}
\end{align*}
$$

Then,

$$
\begin{align*}
& \partial X / \partial x_{j}=\partial Y / \partial y_{j}=\partial Z / \partial z_{j}=0 \tag{21}\\
& -\partial X / \partial y_{j}=\partial Y / \partial x_{j}=\sum_{i=1}^{N} S_{i j} z_{i} \tag{22}\\
& -\partial Y / \partial z_{j}=\partial Z / \partial y_{j}=\sum_{i=1}^{N} S_{i j} x_{i} \tag{23}\\
& -\partial Z / \partial x_{j}=\partial X / \partial z_{j}=\sum_{i=1}^{N} S_{i j} y_{i} \tag{24}
\end{align*}
$$

(note that $S_{l j}=-S_{j f}$).
Differentiation of (15) with respect to an atomic coordinate, p_{k}, gives

$$
\begin{align*}
|\mathbf{T}|\left(\partial \zeta_{j} / \partial p_{k}\right)=x_{j} & \left(\partial X / \partial p_{k}\right)+X\left(\partial x_{j} / \partial p_{k}\right)+y_{j}\left(\partial Y / \partial p_{k}\right) \\
& +Y\left(\partial y_{j} / \partial p_{k}\right)+z_{j}\left(\partial Z / \partial p_{k}\right)+Z\left(\partial z_{j} / \partial p_{k}\right) \\
& -\zeta_{j}\left(\partial|\mathbf{T}| / \partial p_{k}\right) \tag{25}
\end{align*}
$$

Each $\left(\partial \zeta_{j} / \partial p_{k}\right)$ may therefore be evaluated by using (21) through (25), and the additional relationships

$$
\begin{equation*}
\partial|\mathbf{T}| / \partial p_{k}=\left[X\left(\partial X / \partial p_{k}\right)+Y\left(\partial Y / \partial p_{k}\right)+Z\left(\partial Z / \partial p_{k}\right)\right] /|\mathbf{T}| \tag{26}
\end{equation*}
$$

and

$$
\begin{align*}
\partial x_{j} / \partial p_{k} & =0 & & \left(p_{k} \neq x_{j}\right) \tag{27}\\
& =1 & & \left(p_{k}=x_{j}\right), \text { etc. }
\end{align*}
$$

Evaluation of the required derivatives is now straightforward. Differentiating (6) and (7),

$$
\begin{align*}
& \cos \varphi_{m}\left(\partial q_{m} / \partial p_{k}\right)-q_{m} \sin \varphi_{m}\left(\partial \varphi_{m} / \partial p_{k}\right) \\
& \quad=(2 / N)^{1 / 2} \sum_{j=1}^{N}\left(\partial \zeta_{j} / \partial p_{k}\right) \cos [2 \pi m(j-1) / N] \tag{28}\\
& \sin \varphi_{m}\left(\partial q_{m} / \partial p_{k}\right)+q_{m} \cos \varphi_{m}\left(\partial \varphi_{m} / \partial p_{k}\right) \\
& \quad=-(2 / N)^{1 / 2} \sum_{j=1}^{N}\left(\partial \zeta_{j} / \partial p_{k}\right) \sin [2 \pi m(j-1) / N] \tag{29}
\end{align*}
$$

and solving the simultaneous equations for $\left(\partial q_{m} / \partial p_{k}\right)$ and $\left(\partial \varphi_{m} / \partial p_{k}\right)$, one gets

$$
\begin{align*}
\partial \varphi_{m} / \partial p_{k}=- & (2 / N)^{1 / 2}\left\{\sin \varphi_{m} \sum_{j=1}^{N}\left(\partial \zeta_{j} / \partial p_{k}\right)\right. \\
& \times \cos [2 \pi m(j-1) / N]+\cos \varphi_{m} \sum_{j=1}^{N}\left(\partial \zeta_{j} / \partial p_{k}\right) \\
& \times \sin [2 \pi m(j-1) / N]\} / q_{m} \tag{30}
\end{align*}
$$

$$
\begin{align*}
& \partial q_{m} / \partial p_{k}=(2 / N)^{1 / 2}\left\{\cos \varphi_{m} \sum_{j=1}^{N}\left(\partial \zeta_{j} / \partial p_{k}\right)\right. \\
& \times \cos [2 \pi m(j-1) / N]-\sin \varphi_{m} \sum_{j=1}^{N}\left(\partial \zeta_{j} / \partial p_{k}\right) \\
&\times \sin [2 \pi m(j-1) / N]\} \tag{31}
\end{align*}
$$

For the additional coordinate when N is even.

$$
\begin{equation*}
\partial q_{N / 2} / \partial p_{k}=N^{-1 / 2} \sum_{j=1}^{N}(-1)^{j-1}\left(\partial \zeta_{j} / \partial p_{k}\right) \tag{32}
\end{equation*}
$$

Cremer \& Pople have shown that in the case of six-membered rings ($N=6$), the three puckering coordinates (q_{2}, φ_{2}) and q_{3} may be transformed into a 'spherical polar' set (Q, θ, φ), where

$$
\begin{align*}
& q_{2}=Q \sin \theta \tag{33}\\
& q_{3}=Q \cos \theta \tag{34}
\end{align*}
$$

The variances of Q and θ can be related to those of q_{2} and q_{3} by the expressions

$$
\begin{align*}
\sigma^{2}(Q) & =\left(\partial Q / \partial q_{2}\right)^{2} \sigma^{2}\left(q_{2}\right)+\left(\partial Q / \partial q_{3}\right)^{2} \sigma^{2}\left(q_{3}\right) \tag{35}\\
\sigma^{2}(\theta) & =\left(\partial \theta / \partial q_{2}\right)^{2} \sigma^{2}\left(q_{2}\right)+\left(\partial \theta / \partial q_{3}\right)^{2} \sigma^{2}\left(q_{3}\right) . \tag{36}
\end{align*}
$$

Performing the differentiations and simplifying the resulting expressions, one gets

$$
\begin{align*}
\sigma^{2}(Q) & =\sin ^{2} \theta \sigma^{2}\left(q_{2}\right)+\cos ^{2} \theta \sigma^{2}\left(q_{3}\right) \tag{37}\\
\sigma^{2}(\theta) & =\left[\cos ^{2} \theta \sigma^{2}\left(q_{2}\right)+\sin ^{2} \theta \sigma^{2}\left(q_{3}\right)\right] / Q^{2} \tag{38}
\end{align*}
$$

When θ approaches 0 or 180° (corresponding to only slight distortions from the perfect chair form), φ becomes increasingly indeterminate, and this is reflected in very large estimated standard deviations, even for precisely determined structures. For example, the L-arabinopyranose rings in the neutron diffraction studies of β-DL-arabinopyranose (Takagi, Nordenson \& Jeffrey, 1979) and β-L-arabinopyranose (Takagi \& Jeffrey, 1977) have φ values differing by 23.2°, but this difference is only just significant:
β-dL-arabinopyranose: $Q=0.584$ (1) $\AA, \theta=2.1(1)^{\circ}$, $\varphi=140(3)^{\circ}$;
β-L-arabinopyranose: $Q=0.573$ (2) $\AA, \theta=1.5$ (2) ${ }^{\circ}$, $\varphi=116(7)^{\circ}$.
A program for performing these calculations is available from the author.

Thanks are due to Professor B. M. Craven for helpful comments. This research is supported by Grant No. GM-24526 from the US Public Health Service, National Institutes of Health.

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Takagi, S. \& Jeffrey, G. A. (1977). Acta Cryst. B33, 3033-3040.
Takagi, S., Nordenson, S. \& Jeffrey, G. A. (1979). Acta Cryst. B 35, 991-993.

